

Multiplikation und Division in $\mathbb Q$

Rechenregeln	$\frac{\mathbf{a} \cdot \mathbf{c}}{\mathbf{c}} = \frac{\mathbf{a} \cdot \mathbf{c}}{\mathbf{c}}$	$\underline{a} \cdot \underline{c} = \underline{a} \cdot \underline{d}$
	b d b⋅d	$b \cdot d b \cdot c$

Vorzeichenregeln

$$+ \cdot + = +$$
 $+ : + = +$
 $- \cdot - = +$
 $- : - = +$
 $- \cdot + = - : + = + \cdot - = + : - = -$

Potenzgesetze

1. Potenzgesetz
$$a^{n} \cdot a^{m} = a^{n+m}$$
 Beispiel: $3^{3} \cdot 3^{4} = 3^{3+4} = 3^{7}$ $3^{3} \cdot 3^{-4} = 3^{3-4} = 3^{-1} = \frac{1}{3}$

Ü: a)
$$5^5 \cdot 5^7 =$$
 b) $0, 5 \cdot 0, 5^2 \cdot 0, 5^5 =$ c) $(-2)^3 \cdot (-2)^{-3} =$

2. Potenzgesetz
$$(a^n)^m = a^{n \cdot m}$$
 Beispiel: $(3^3)^4 = 3^{3 \cdot 4} = 3^{12}$

Ü: a)
$$(3,5^5)^5 =$$
 b) $[(k^4)^2]^2 =$ c) $\left[\left(-1\frac{1}{3} \right)^2 \right]^{-7} =$

3. Potenzgesetz
$$a^n \cdot b^n = (a \cdot b)^n$$
 Beispiel: $2^4 \cdot 3^4 = (2 \cdot 3)^4 = 6^4$

Ü: a)
$$5^2 \cdot 3^2 =$$
 b) $x^{-3} \cdot y^{-3} \cdot z^{-3} =$ c) $(-2,5)^7 \cdot (-2)^7 =$

4. Potenzgesetz
$$\frac{a^{n}}{a^{m}} = a^{n-m}$$
 Beispiel:
$$\frac{3^{4}}{3^{3}} = 3^{4-3} = 3^{1} = 3$$

$$\frac{3^{3}}{3^{4}} = 3^{3-4} = 3^{-1} = \frac{1}{3}$$

Ü: a)
$$7^4: 7^7 =$$
 b) $(-2,2)^{-3}: (-2,2)^3 =$ c) $\frac{2^{-2}}{2^{-5}} =$

5. Potenzgesetz
$$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$$
 Beispiel:
$$\frac{2^4}{6^4} = \left(\frac{2}{6}\right)^4 = \left(\frac{1}{3}\right)^4$$

Ü: a)
$$2^{-2}:14^{-2} =$$
 b) $(-8)^5:4^5 =$ c) $\frac{3^{-1}}{9^{-1}} =$

Lösen von (Un)gleichungen durch Äquivalenzumformungen

1 Gleichungen

Die Lösungsmenge einer Gleichung ändert sich nicht, wenn man

- auf beiden Seiten die gleiche Zahl addiert oder subtrahiert,
- beide Seiten mit der gleichen von Null verschiedenen Zahl multipliziert oder durch sie dividiert.

Beispiele: $\mathbb{G} = \mathbb{Q}$

1.
$$-2 \cdot x + 6 = 3 \quad | -6$$

 $\Leftrightarrow \quad -2 \cdot x = -3 \quad | : (-2)$

$$\Leftrightarrow \qquad \qquad x = 1, 5$$

$$\mathbb{L} = \{1, 5\}$$

2.
$$\frac{1}{4} \cdot x - 5 = -7 + 5$$

$$\Leftrightarrow \frac{1}{4} \cdot x = -2 \quad |\cdot 4|$$

$$\Leftrightarrow$$
 $x = -8$

$$IL = \{-8\}$$

2 Ungleichungen

Die Lösungsmenge einer Gleichung ändert sich nicht, wenn man

- auf beiden Seiten die gleiche Zahl addiert oder subtrahiert,
- beide Seiten mit der gleichen positiven Zahl multipliziert oder durch sie dividiert,
- beide Seiten mit der gleichen negativen Zahl multipliziert oder durch sie dividiert und das Ungleichheitszeichen umkehrt (Inversionsgesetz).

Beispiele: $\mathbb{G} = \mathbb{Q}$

1.
$$-2 \cdot x < 14$$
 |: (-2)
 $\Leftrightarrow x > -7$ Inversion!
IL = $\{x \mid x > -7\}$

2.
$$6 \cdot x > -27$$
 |: 6
$$\Leftrightarrow x > -4,5$$

$$\mathbb{L} = \{x \mid x > -4,5\}$$

3.
$$-\frac{1}{4} \cdot x + 5 \ge -3 \quad |-5|$$

$$\Leftrightarrow \quad -\frac{1}{4} \cdot x \ge -8 \quad |\cdot(-4)|$$

$$\Rightarrow x \leq 32 \quad \text{Inversion!}$$

$$\mathbb{L} = \{x \mid x \leq 32\}$$

Ü: Löse durch Äquivalenzumformungen die folgenden Gleichungen und Ungleichungen mit $\mathbb{G} = \mathbb{Q}$:

a)
$$-5x + 36 = 28$$

a)
$$-5x + 36 = 28$$
 b) $-x - 67 \le 34$

c)
$$2x + 13 \le -18$$

d)
$$-12x - 41 > -23$$

d)
$$-12x - 41 > -23$$
 e) $(177 - 202) \cdot x + 296 = 411$ f) $\frac{1}{3} + \frac{2}{3}x < -\frac{1}{6}$

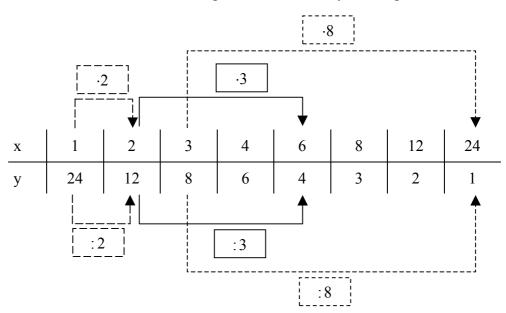
$$f) \frac{1}{3} + \frac{2}{3}x < -\frac{1}{6}$$

g)
$$2^3 - x \ge 3^2 \cdot 2$$

Indirekte Proportionalität

Entspricht bei einer Zuordnung von Größen das **n-fache** der einen Größe dem **n-ten Teil** der anderen Größe, so heißt diese Zuordnung indirekte Proportionalität.

Beispiel: Der Flächeninhalt eines Rechtecks beträgt 24 cm². Wenn $\mathbb{G} = \mathbb{I}\mathbb{N} \times \mathbb{I}\mathbb{N}$, ist dies für acht Rechtecke verschiedener Länge x cm und Breite y cm möglich.



Eigenschaften:

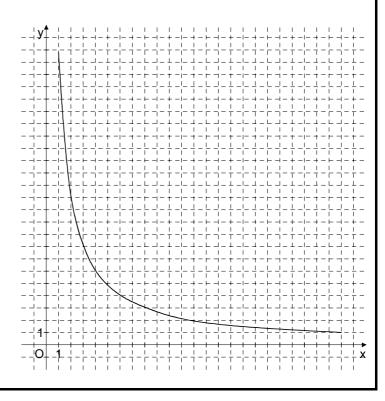
• Alle Zahlenpaare (x | y) einer indirekten Proportionalität sind **produktgleich**. Das Produkt $x \cdot y$ hat immer den **gleichen Wert**.

Beispiel: $x \cdot y = 1 \cdot 24 = 2 \cdot 12 = 3 \cdot 8 = 4 \cdot 6 = 6 \cdot 4 = 8 \cdot 3 = 12 \cdot 2 = 24 \cdot 1$

Sprechweise: "x und y sind zueinander indirekt proportional"

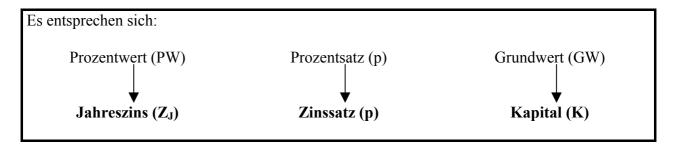
Schreibweise: $y \sim \frac{1}{x}$

 Der Graph einer indirekten Proportionalität ist ein
 Hyperbelast. (G = Q₀⁺ × Q₀⁺)
 Beispiel:



Zinsrechnung

Die Zinsrechnung ist eine Anwendung der Prozentrechnung. Unter Zinsen (kurz: **Zins**) versteht man den Geldbetrag, den man nach einer bestimmten Zeit für geliehenes Geld bezahlen muss oder für verliehenes Geld bekommt.



Die so berechneten Zinsen Z_J beziehen sich auf ein Jahr (Jahreszins). Wird ein anderer Zeitraum betrachtet, so muss der Jahreszins auf diesen Zeitraum umgerechnet werden. Ein Geschäftsjahr hat 365 Tage.

Zins für 1 Jahr (Jahreszins)
$$Z_J = \frac{K \cdot p}{100}$$
 Zins für 1 Tag $Z_t = \frac{K \cdot p}{100 \cdot 365}$ Zins für n Jahre $Z_n = \frac{K \cdot p \cdot n}{100}$ Zins für T Tage $Z_T = \frac{K \cdot p \cdot T}{100 \cdot 365}$

Beispiel: Berechne die Zinsen für 292 Zinstage, wenn ein Kapital 15 000,00 € zu 8% verliehen wird.

$$Z_{T} = \frac{15000 \cdot 8 \cdot 292}{100 \cdot 365}$$
 $Z_{T} = 960 \cdot \text{Der Zins für 292 Tage beträgt 960,00} \cdot \text{E.}$

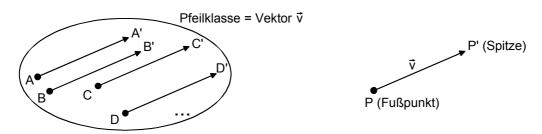
Übungen:

- 1.0 Auf einem Sparbuch, das mit 3,75% verzinst wird, sind 940,00 €.
- 1.1 Berechne die Zinsen nach einem Jahr.
- 1.2 Berechne den Zinsertrag für das zweite Jahr, wenn die Zinsen des ersten Jahres dem Kapital zugerechnet werden.
- Herr Maurer gibt 10000,00 € zu 6,5% auf die Bank und legt alljährlich die gewonnen Zinsen wieder zu seinem Kapital. Damit erhöht sich sein Kapital Jahr für Jahr um den Zinsertrag. Berechne sein Endkapital nach 5 Jahren.

Die Parallelverschiebung

Eigenschaften: $P \xrightarrow{\vec{v}} P'$

- Bei allen Parallelverschiebungen sind die Verbindungsstrecken von Urpunkt P und Bildpunkt P' parallel, gleich lang und gleich gerichtet.
- Sie bilden eine Pfeilklasse. Jede Pfeilklasse heißt **Vektor**. Durch jede Parallelverschiebung ist umkehrbar eindeutig ein Vektor bestimmt.
- Alle Parallelverschiebungen haben keinen Fixpunkt.
- Alle Parallelverschiebungen sind längen- und winkeltreu ("Kongruenzabbildung").
- Alle Parallelverschiebungen sind geraden- und kreistreu.



Jeder Vektor \vec{v} lässt sich im Koordinatensystem durch seine Koordinaten eindeutig festlegen. Die Koordinaten des Pfeils $\overrightarrow{PP'}$ und damit des Vektors \vec{v} werden durch die Koordinaten des **Fußpunktes P(x|y)** und die Koordinaten der **Spitze P'(x'|y')** festgelegt. Man berechnet sie nach der Regel:

$$\overrightarrow{PP'} = \begin{pmatrix} x' - x \\ y' - y \end{pmatrix}$$
z. B. $P(-2|1)$ und $P'(4|3)$ $\overrightarrow{PP'} = \begin{pmatrix} 4 - (-2) \\ 3 - 1 \end{pmatrix}$ $\overrightarrow{PP'} = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$

Beispiel: $\triangle ABC \xrightarrow{\overline{v} = \binom{6}{2}} \triangle A'B'C'$ mit A(-1|1), B(3|-2) und C(4|2)A

C'

A +2

Gesetze zur Vektorrechnung

1 Kommutativgesetz und Assoziativgesetz bei der Addition von Vektoren

Kommutativgesetz $\overrightarrow{a} \oplus \overrightarrow{b} = \overrightarrow{b} \oplus \overrightarrow{a}$ Assoziativgesetz $(\overrightarrow{a} \oplus \overrightarrow{b}) \oplus \overrightarrow{c} = \overrightarrow{a} \oplus (\overrightarrow{b} \oplus \overrightarrow{c})$

2 Berechnung von Summenvektoren

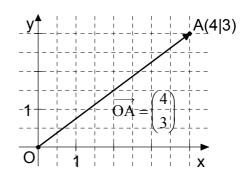
Allgemein
$$\vec{a} = \begin{pmatrix} a_x \\ a_y \end{pmatrix}$$
; $\vec{b} = \begin{pmatrix} b_x \\ b_y \end{pmatrix}$ $\vec{a} \oplus \vec{b} = \begin{pmatrix} a_x \\ a_y \end{pmatrix} \oplus \begin{pmatrix} b_x \\ b_y \end{pmatrix}$ $\vec{a} \oplus \vec{b} = \begin{pmatrix} a_x + b_x \\ a_y + b_y \end{pmatrix}$

Beispiel $\vec{a} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$; $\vec{b} = \begin{pmatrix} -4 \\ 1 \end{pmatrix}$ $\vec{a} \oplus \vec{b} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \oplus \begin{pmatrix} -4 \\ 1 \end{pmatrix}$ $\vec{a} \oplus \vec{b} = \begin{pmatrix} 3 + (-4) \\ 2 + 1 \end{pmatrix}$ $\vec{a} \oplus \vec{b} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$

3 Ortspfeil

Ortspfeile sind Pfeile, die vom Ursprung des Koordinatensystems zu einem Punkt im Koordinatensystem führen. Die Koordinaten des Ortspfeils sind dieselben wie die Koordinaten des Punktes.





4 Berechnung der Koordinaten von Bildpunkten

Allg.:
$$\overrightarrow{OA'} = \overrightarrow{OA} \oplus \overrightarrow{V}$$
 $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \oplus \begin{pmatrix} v_x \\ v_y \end{pmatrix}$ $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x + v_x \\ y + v_y \end{pmatrix}$ $A'(x + v_x \mid y + v_y)$

z. B.: $A(2 \mid 1)$ $\overrightarrow{V} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$

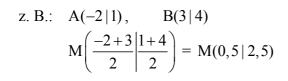
$$\overrightarrow{OA'} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \oplus \begin{pmatrix} 4 \\ 3 \end{pmatrix} \qquad \overrightarrow{OA'} = \begin{pmatrix} 2+4 \\ 1+3 \end{pmatrix}$$

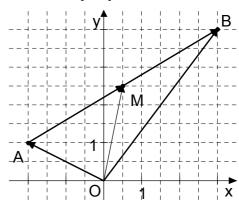
$$\overrightarrow{OA'} = \begin{pmatrix} 6 \\ 4 \end{pmatrix} \qquad A'(6 \mid 4)$$



5 Berechnung der Koordinaten des Mittelpunktes der Strecke [AB]

Allg.:
$$A(x_A | y_A)$$
, $B(x_B | y_B)$, $M(x_M | y_M)$
 $M(x_M | y_M) = \left(\frac{x_A + x_B}{2} \middle| \frac{y_A + y_B}{2}\right)$





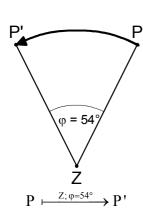
Die Drehung

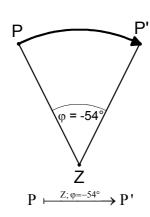
Eigenschaften: $P \xrightarrow{Z; \phi} P'$

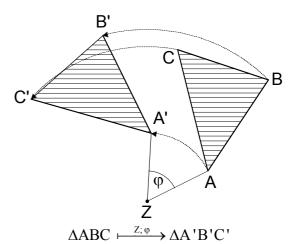
- Jede Drehung besitzt einen Punkt Z als Drehzentrum und einen Winkel ϕ als Drehwinkel.
- Die Verbindungsstrecken [PZ] von Urpunkt P und Drehzentrum Z und [P'Z] vom zugehörigen Bildpunkt P' und Drehzentrum Z sind gleich lang und schließen den Winkel PZP' mit dem Maß φ ein.
- Alle Drehungen haben nur das Zentrum Z als Fixpunkt.
- Alle Drehungen sind längen- und winkeltreu ("Kongruenzabbildung").
- Alle Drehungen sind geraden- und kreistreu.

positive Drehrichtung

negative Drehrichtung

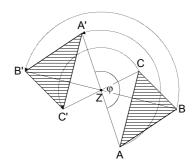




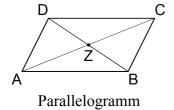


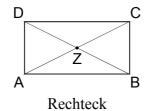
Eine **Drehung um 180°** nennt man auch eine **Punkt-spiegelung** am Zentrum Z.

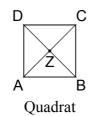
 $\triangle ABC \xrightarrow{Z; \phi=180^{\circ}} \Delta A'B'C'$

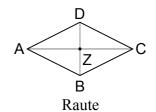


Merke: Eine Figur heißt punktsymmetrisch, wenn sie durch Drehung an einem Punkt Z um 180° auf sich selbst abgebildet werden kann.



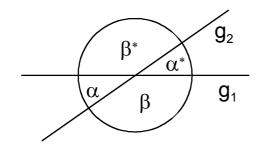






Regeln für Winkel

1 Neben- und Scheitelwinkel

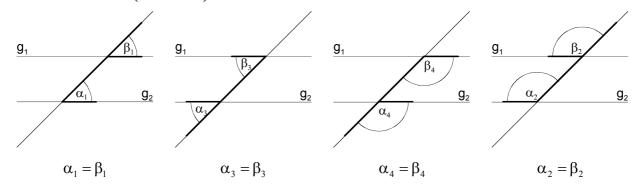


Scheitelwinkel sind gleich groß: $\alpha = \alpha^*$ und $\beta = \beta^*$

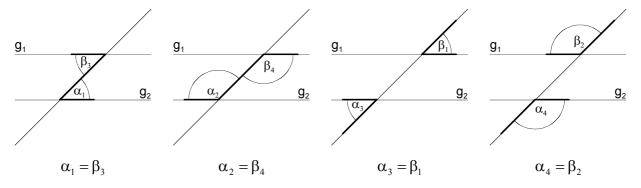
Nebenwinkel ergänzen sich zu 180°: $\alpha + \beta = 180^{\circ}$

2 Winkel an Parallelen $(g_1 || g_2)$

2.1 Stufenwinkel (F-Winkel)



2.2 Wechselwinkel (Z-Winkel)



3 Innenwinkelsummen

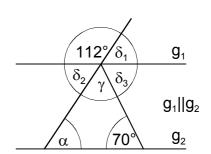
3.1 im Dreieck

In jedem Dreieck beträgt die Summe der Winkelmaße der drei Innenwinkel 180° : $\alpha + \beta + \gamma = 180^{\circ}$

3.2 im Viereck

In jedem Viereck beträgt die Summe der Winkelmaße der vier Innenwinkel 360°: $\alpha + \beta + \gamma + \delta = 360^{\circ}$

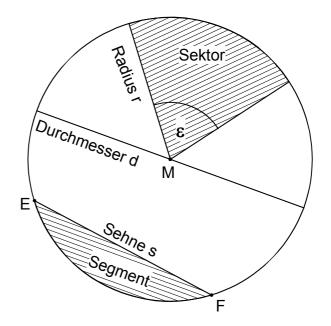
Ü: Gib die fehlenden Winkelmaße an und begründe.



Der Kreis

1 Kreis k

- Die Verbindungsstrecke zweier Kreispunkte E und F heißt **Sehne s**.
- Die Sehne s teilt die Kreislinie in zwei Kreisbögen EF und FE.
- Das von Kreissehne und Kreisbogen begrenzte Flächenstück ist ein Kreissegment.
- Ein von zwei Radien und einem Kreisbogen begrenztes Flächenstück ist ein **Kreissektor**.
- Die beiden Radien schließen den Mittelpunktswinkel mit dem Maß ε ein.



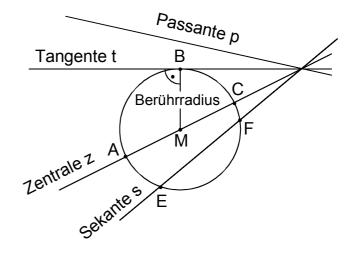
2 Lagebeziehung von Kreis k und Gerade

Passante p: $p \cap k = \emptyset$

Tangente t: $t \cap k = \{B\}$

Zentrale z: $z \cap k = \{A; C\}$ mit $M \in z$

Sekante s: $s \cap k = \{E; F\}$



3 Berechnungen am Kreis

Für den Kreisumfang u gilt:

$$\mathbf{u} = \mathbf{2} \cdot \mathbf{r} \cdot \boldsymbol{\pi}$$

$$\mathbf{M}$$

Für den Inhalt der Kreisfläche A gilt:

$$\mathbf{A} = \mathbf{r}^2 \cdot \mathbf{\pi}$$

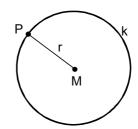
Für die Kreiszahl π wird vorläufig der Wert $\pi \approx 3,14$ oder $\pi \approx \frac{22}{7}$ benutzt.

Geometrische Ortslinien

1 Kreis

Der Kreis ist der geometrische Ort aller Punkte, die von einem Punkt die gleiche Entfernung haben.

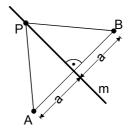
$$k(M; r) = \{P \mid \overline{PM} = r\}$$



2 Mittelsenkrechte

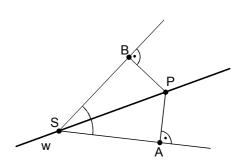
Die Mittelsenkrechte ist der geometrische Ort aller Punke, die von zwei Punkten die gleiche Entfernung haben.

$$m_{[AB]} = \{P \mid \overline{AP} = \overline{BP}\}$$



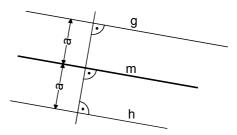
3 Winkelhalbierende

Die Winkelhalbierende ist der geometrische Ort aller Punkte, die von beiden Schenkeln eines Winkels den gleichen Abstand haben.



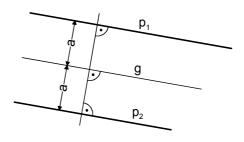
4 Mittelparallele

Die Mittelparallele zweier paralleler Geraden ist der geometrische Ort aller Punkte, die von den beiden Geraden den gleichen Abstand haben.



5 Parallelenpaar

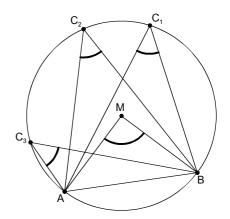
Das Parallelenpaar zu einer Geraden ist der geometrische Ort aller Punkte, die von einer Geraden den gleichen Abstand a haben.



Winkel am Kreis

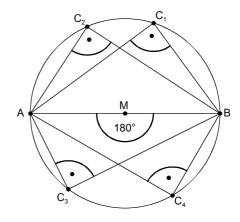
1 Randwinkelsatz

- Der Winkel AMB heißt Mittelpunktswinkel über der Sehne [AB].
- Die Winkel AC_nB sind die Randwinkel über der Sehne [AB].
- Alle Randwinkel über einer Sehne eines Kreises besitzen das gleiche Maß und sind halb so groß wie der dazugehörige Mittelpunktswinkel.



2 Thaleskreis (Sonderfall des Randwinkelsatzes)

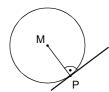
- Verbindet man die **Punkte** C_n des **Halbkreises** über einer Mittelsehne mit den Endpunkten A und B, so haben **alle Winkel AC**_nB bzw. BC_nA das Maß 90°.
- Umgekehrt gilt: Hat der Winkel ACB bzw. BCA das Maß 90°, liegt sein Scheitel C auf dem Halbkreis über der Mittelsehne [AB]



3 Tangentenkonstruktion

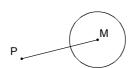
Fall1: Tangente im Berührpunkt P, der auf der Kreislinie k liegt.

Zeichne die Strecke [MP] oder die Zentrale durch M und P.

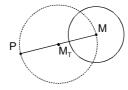


Zeichne die Senkrechte zur Strecke [MP] oder zur Zentrale durch M und P.

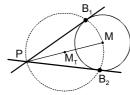
Fall 2: Tangenten von einem Punkt P aus an die Kreislinie k.



Zeichne die Strecke [MP].



Zeichne einen Kreis (Thaleskreis), dessen Mittelpunkt der Mittelpunkt der Strecke [PM] ist.



Die Schnittpunkte der beiden Kreise bilden die Berührpunkte B₁ und B₂ der beiden Tangenten.

Lösungen

$$7/1$$
 1: a) 5^{12}

b)
$$0.5^8$$

c)
$$(-2)^0 = 1$$

2: a)
$$3.5^{25}$$
 b) k^{16}

c)
$$\left(-1\frac{1}{3}\right)^{-1}$$

b)
$$(x \cdot y \cdot z)^{-}$$

b)
$$(-2,2)^{-1}$$

3: a)
$$15^2$$
 b) $(x \cdot y \cdot z)^{-3}$ c) 5^7
4: a) 7^{-3} b) $(-2,2)^{-6}$ c) 2^3
5: a) $\left(\frac{1}{7}\right)^{-2} = 49$ b) $(-2)^5$ c) $\left(\frac{1}{3}\right)^{-1} = 3$

$$c) \left(\frac{1}{3}\right)^{-1} = 3$$

7/2

a)
$$\mathbb{L} = \{1, 6\}$$

b)
$$\mathbb{L} = \{x \mid x \ge -101\}$$

b)
$$\mathbb{L} = \{x \mid x \ge -101\}$$
 c) $\mathbb{L} = \{x \mid x \le -15, 5\}$

d)
$$\mathbb{L} = \{x \mid x < -1, 5\}$$

e)
$$\mathbb{L} = \{-4, 6\}$$

$$d) \ \, \mathbb{L} = \{x \mid x < -1, 5\} \qquad \quad e) \ \, \mathbb{L} = \{-4, 6\} \qquad \qquad f) \ \, \mathbb{L} = \{x \mid x < -\frac{3}{4}\}$$

g)
$$\mathbb{L} = \{x \mid x \leq -10\}$$

7/4 1.1:
$$Z_{Jahr1} = 35,25$$
 €

1.2:
$$Z_{Jahr2} = 36,57$$
 €

2:
$$K_{Jahr5} = 13700,87 €$$

$$7/7$$
 $\delta_1 = 180^{\circ} - 112^{\circ}$

$$\delta_1 = 68^{\circ}$$
 (Nebenwinkel)

$$\alpha = \delta_1$$

$$\alpha = 68^{\circ}$$

$$\delta_2 = \delta_1$$
$$\delta_3 = 70^{\circ}$$

$$\delta_2 = 68^{\circ}$$
 (Scheitelwinkel)

$$\gamma = 180^{\circ} - 68^{\circ} - 70^{\circ} \qquad \gamma = 42^{\circ}$$

$$\gamma = 42^{\circ}$$

(Innenwinkelsumme im Dreieck)